|
|
/*
* Implementation of the Global Interpreter Lock (GIL). */
#include <stdlib.h>
#include <errno.h>
#include "pycore_atomic.h"
/* First some general settings */
#define INTERVAL (_PyRuntime.ceval.gil.interval >= 1 ? _PyRuntime.ceval.gil.interval : 1)
/*
Notes about the implementation:
- The GIL is just a boolean variable (locked) whose access is protected by a mutex (gil_mutex), and whose changes are signalled by a condition variable (gil_cond). gil_mutex is taken for short periods of time, and therefore mostly uncontended.
- In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be able to release the GIL on demand by another thread. A volatile boolean variable (gil_drop_request) is used for that purpose, which is checked at every turn of the eval loop. That variable is set after a wait of `interval` microseconds on `gil_cond` has timed out.
[Actually, another volatile boolean variable (eval_breaker) is used which ORs several conditions into one. Volatile booleans are sufficient as inter-thread signalling means since Python is run on cache-coherent architectures only.]
- A thread wanting to take the GIL will first let pass a given amount of time (`interval` microseconds) before setting gil_drop_request. This encourages a defined switching period, but doesn't enforce it since opcodes can take an arbitrary time to execute.
The `interval` value is available for the user to read and modify using the Python API `sys.{get,set}switchinterval()`.
- When a thread releases the GIL and gil_drop_request is set, that thread ensures that another GIL-awaiting thread gets scheduled. It does so by waiting on a condition variable (switch_cond) until the value of last_holder is changed to something else than its own thread state pointer, indicating that another thread was able to take the GIL.
This is meant to prohibit the latency-adverse behaviour on multi-core machines where one thread would speculatively release the GIL, but still run and end up being the first to re-acquire it, making the "timeslices" much longer than expected. (Note: this mechanism is enabled with FORCE_SWITCHING above)*/
#include "condvar.h"
#define MUTEX_INIT(mut) \
if (PyMUTEX_INIT(&(mut))) { \ Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };#define MUTEX_FINI(mut) \
if (PyMUTEX_FINI(&(mut))) { \ Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };#define MUTEX_LOCK(mut) \
if (PyMUTEX_LOCK(&(mut))) { \ Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };#define MUTEX_UNLOCK(mut) \
if (PyMUTEX_UNLOCK(&(mut))) { \ Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
#define COND_INIT(cond) \
if (PyCOND_INIT(&(cond))) { \ Py_FatalError("PyCOND_INIT(" #cond ") failed"); };#define COND_FINI(cond) \
if (PyCOND_FINI(&(cond))) { \ Py_FatalError("PyCOND_FINI(" #cond ") failed"); };#define COND_SIGNAL(cond) \
if (PyCOND_SIGNAL(&(cond))) { \ Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };#define COND_WAIT(cond, mut) \
if (PyCOND_WAIT(&(cond), &(mut))) { \ Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
{ \ int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \ if (r < 0) \ Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \ if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \ timeout_result = 1; \ else \ timeout_result = 0; \ } \
#define DEFAULT_INTERVAL 5000
static void _gil_initialize(struct _gil_runtime_state *state){ _Py_atomic_int uninitialized = {-1}; state->locked = uninitialized; state->interval = DEFAULT_INTERVAL;}
static int gil_created(void){ return (_Py_atomic_load_explicit(&_PyRuntime.ceval.gil.locked, _Py_memory_order_acquire) ) >= 0;}
static void create_gil(void){ MUTEX_INIT(_PyRuntime.ceval.gil.mutex);#ifdef FORCE_SWITCHING
MUTEX_INIT(_PyRuntime.ceval.gil.switch_mutex);#endif
COND_INIT(_PyRuntime.ceval.gil.cond);#ifdef FORCE_SWITCHING
COND_INIT(_PyRuntime.ceval.gil.switch_cond);#endif
_Py_atomic_store_relaxed(&_PyRuntime.ceval.gil.last_holder, 0); _Py_ANNOTATE_RWLOCK_CREATE(&_PyRuntime.ceval.gil.locked); _Py_atomic_store_explicit(&_PyRuntime.ceval.gil.locked, 0, _Py_memory_order_release);}
static void destroy_gil(void){ /* some pthread-like implementations tie the mutex to the cond
* and must have the cond destroyed first. */ COND_FINI(_PyRuntime.ceval.gil.cond); MUTEX_FINI(_PyRuntime.ceval.gil.mutex);#ifdef FORCE_SWITCHING
COND_FINI(_PyRuntime.ceval.gil.switch_cond); MUTEX_FINI(_PyRuntime.ceval.gil.switch_mutex);#endif
_Py_atomic_store_explicit(&_PyRuntime.ceval.gil.locked, -1, _Py_memory_order_release); _Py_ANNOTATE_RWLOCK_DESTROY(&_PyRuntime.ceval.gil.locked);}
static void recreate_gil(void){ _Py_ANNOTATE_RWLOCK_DESTROY(&_PyRuntime.ceval.gil.locked); /* XXX should we destroy the old OS resources here? */ create_gil();}
static void drop_gil(PyThreadState *tstate){ if (!_Py_atomic_load_relaxed(&_PyRuntime.ceval.gil.locked)) Py_FatalError("drop_gil: GIL is not locked"); /* tstate is allowed to be NULL (early interpreter init) */ if (tstate != NULL) { /* Sub-interpreter support: threads might have been switched
under our feet using PyThreadState_Swap(). Fix the GIL last holder variable so that our heuristics work. */ _Py_atomic_store_relaxed(&_PyRuntime.ceval.gil.last_holder, (uintptr_t)tstate); }
MUTEX_LOCK(_PyRuntime.ceval.gil.mutex); _Py_ANNOTATE_RWLOCK_RELEASED(&_PyRuntime.ceval.gil.locked, /*is_write=*/1); _Py_atomic_store_relaxed(&_PyRuntime.ceval.gil.locked, 0); COND_SIGNAL(_PyRuntime.ceval.gil.cond); MUTEX_UNLOCK(_PyRuntime.ceval.gil.mutex);
#ifdef FORCE_SWITCHING
if (_Py_atomic_load_relaxed(&_PyRuntime.ceval.gil_drop_request) && tstate != NULL) { MUTEX_LOCK(_PyRuntime.ceval.gil.switch_mutex); /* Not switched yet => wait */ if (((PyThreadState*)_Py_atomic_load_relaxed( &_PyRuntime.ceval.gil.last_holder) ) == tstate) { RESET_GIL_DROP_REQUEST(); /* NOTE: if COND_WAIT does not atomically start waiting when
releasing the mutex, another thread can run through, take the GIL and drop it again, and reset the condition before we even had a chance to wait for it. */ COND_WAIT(_PyRuntime.ceval.gil.switch_cond, _PyRuntime.ceval.gil.switch_mutex); } MUTEX_UNLOCK(_PyRuntime.ceval.gil.switch_mutex); }#endif
}
static void take_gil(PyThreadState *tstate){ int err; if (tstate == NULL) Py_FatalError("take_gil: NULL tstate");
err = errno; MUTEX_LOCK(_PyRuntime.ceval.gil.mutex);
if (!_Py_atomic_load_relaxed(&_PyRuntime.ceval.gil.locked)) goto _ready;
while (_Py_atomic_load_relaxed(&_PyRuntime.ceval.gil.locked)) { int timed_out = 0; unsigned long saved_switchnum;
saved_switchnum = _PyRuntime.ceval.gil.switch_number; COND_TIMED_WAIT(_PyRuntime.ceval.gil.cond, _PyRuntime.ceval.gil.mutex, INTERVAL, timed_out); /* If we timed out and no switch occurred in the meantime, it is time
to ask the GIL-holding thread to drop it. */ if (timed_out && _Py_atomic_load_relaxed(&_PyRuntime.ceval.gil.locked) && _PyRuntime.ceval.gil.switch_number == saved_switchnum) { SET_GIL_DROP_REQUEST(); } }_ready:#ifdef FORCE_SWITCHING
/* This mutex must be taken before modifying
_PyRuntime.ceval.gil.last_holder (see drop_gil()). */ MUTEX_LOCK(_PyRuntime.ceval.gil.switch_mutex);#endif
/* We now hold the GIL */ _Py_atomic_store_relaxed(&_PyRuntime.ceval.gil.locked, 1); _Py_ANNOTATE_RWLOCK_ACQUIRED(&_PyRuntime.ceval.gil.locked, /*is_write=*/1);
if (tstate != (PyThreadState*)_Py_atomic_load_relaxed( &_PyRuntime.ceval.gil.last_holder)) { _Py_atomic_store_relaxed(&_PyRuntime.ceval.gil.last_holder, (uintptr_t)tstate); ++_PyRuntime.ceval.gil.switch_number; }
#ifdef FORCE_SWITCHING
COND_SIGNAL(_PyRuntime.ceval.gil.switch_cond); MUTEX_UNLOCK(_PyRuntime.ceval.gil.switch_mutex);#endif
if (_Py_atomic_load_relaxed(&_PyRuntime.ceval.gil_drop_request)) { RESET_GIL_DROP_REQUEST(); } if (tstate->async_exc != NULL) { _PyEval_SignalAsyncExc(); }
MUTEX_UNLOCK(_PyRuntime.ceval.gil.mutex); errno = err;}
void _PyEval_SetSwitchInterval(unsigned long microseconds){ _PyRuntime.ceval.gil.interval = microseconds;}
unsigned long _PyEval_GetSwitchInterval(){ return _PyRuntime.ceval.gil.interval;}
|