|
|
/* Parser generator */
/* For a description, see the comments at end of this file */
#include "Python.h"
#include "pgenheaders.h"
#include "token.h"
#include "node.h"
#include "grammar.h"
#include "metagrammar.h"
#include "pgen.h"
extern int Py_DebugFlag;extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */
/* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */
typedef struct _nfaarc { int ar_label; int ar_arrow;} nfaarc;
typedef struct _nfastate { int st_narcs; nfaarc *st_arc;} nfastate;
typedef struct _nfa { int nf_type; char *nf_name; int nf_nstates; nfastate *nf_state; int nf_start, nf_finish;} nfa;
/* Forward */static void compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb);static void compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb);static void compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb);static void compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb);
static intaddnfastate(nfa *nf){ nfastate *st;
nf->nf_state = (nfastate *)PyObject_REALLOC(nf->nf_state, sizeof(nfastate) * (nf->nf_nstates + 1)); if (nf->nf_state == NULL) Py_FatalError("out of mem"); st = &nf->nf_state[nf->nf_nstates++]; st->st_narcs = 0; st->st_arc = NULL; return st - nf->nf_state;}
static voidaddnfaarc(nfa *nf, int from, int to, int lbl){ nfastate *st; nfaarc *ar;
st = &nf->nf_state[from]; st->st_arc = (nfaarc *)PyObject_REALLOC(st->st_arc, sizeof(nfaarc) * (st->st_narcs + 1)); if (st->st_arc == NULL) Py_FatalError("out of mem"); ar = &st->st_arc[st->st_narcs++]; ar->ar_label = lbl; ar->ar_arrow = to;}
static nfa *newnfa(char *name){ nfa *nf; static int type = NT_OFFSET; /* All types will be disjunct */
nf = (nfa *)PyObject_MALLOC(sizeof(nfa)); if (nf == NULL) Py_FatalError("no mem for new nfa"); nf->nf_type = type++; nf->nf_name = name; /* XXX strdup(name) ??? */ nf->nf_nstates = 0; nf->nf_state = NULL; nf->nf_start = nf->nf_finish = -1; return nf;}
typedef struct _nfagrammar { int gr_nnfas; nfa **gr_nfa; labellist gr_ll;} nfagrammar;
/* Forward */static void compile_rule(nfagrammar *gr, node *n);
static nfagrammar *newnfagrammar(void){ nfagrammar *gr;
gr = (nfagrammar *)PyObject_MALLOC(sizeof(nfagrammar)); if (gr == NULL) Py_FatalError("no mem for new nfa grammar"); gr->gr_nnfas = 0; gr->gr_nfa = NULL; gr->gr_ll.ll_nlabels = 0; gr->gr_ll.ll_label = NULL; addlabel(&gr->gr_ll, ENDMARKER, "EMPTY"); return gr;}
static nfa *addnfa(nfagrammar *gr, char *name){ nfa *nf;
nf = newnfa(name); gr->gr_nfa = (nfa **)PyObject_REALLOC(gr->gr_nfa, sizeof(nfa*) * (gr->gr_nnfas + 1)); if (gr->gr_nfa == NULL) Py_FatalError("out of mem"); gr->gr_nfa[gr->gr_nnfas++] = nf; addlabel(&gr->gr_ll, NAME, nf->nf_name); return nf;}
#ifdef Py_DEBUG
static char REQNFMT[] = "metacompile: less than %d children\n";
#define REQN(i, count) \
if (i < count) { \ fprintf(stderr, REQNFMT, count); \ Py_FatalError("REQN"); \ } else
#else
#define REQN(i, count) /* empty */
#endif
static nfagrammar *metacompile(node *n){ nfagrammar *gr; int i;
if (Py_DebugFlag) printf("Compiling (meta-) parse tree into NFA grammar\n"); gr = newnfagrammar(); REQ(n, MSTART); i = n->n_nchildren - 1; /* Last child is ENDMARKER */ n = n->n_child; for (; --i >= 0; n++) { if (n->n_type != NEWLINE) compile_rule(gr, n); } return gr;}
static voidcompile_rule(nfagrammar *gr, node *n){ nfa *nf;
REQ(n, RULE); REQN(n->n_nchildren, 4); n = n->n_child; REQ(n, NAME); nf = addnfa(gr, n->n_str); n++; REQ(n, COLON); n++; REQ(n, RHS); compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish); n++; REQ(n, NEWLINE);}
static voidcompile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb){ int i; int a, b;
REQ(n, RHS); i = n->n_nchildren; REQN(i, 1); n = n->n_child; REQ(n, ALT); compile_alt(ll, nf, n, pa, pb); if (--i <= 0) return; n++; a = *pa; b = *pb; *pa = addnfastate(nf); *pb = addnfastate(nf); addnfaarc(nf, *pa, a, EMPTY); addnfaarc(nf, b, *pb, EMPTY); for (; --i >= 0; n++) { REQ(n, VBAR); REQN(i, 1); --i; n++; REQ(n, ALT); compile_alt(ll, nf, n, &a, &b); addnfaarc(nf, *pa, a, EMPTY); addnfaarc(nf, b, *pb, EMPTY); }}
static voidcompile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb){ int i; int a, b;
REQ(n, ALT); i = n->n_nchildren; REQN(i, 1); n = n->n_child; REQ(n, ITEM); compile_item(ll, nf, n, pa, pb); --i; n++; for (; --i >= 0; n++) { REQ(n, ITEM); compile_item(ll, nf, n, &a, &b); addnfaarc(nf, *pb, a, EMPTY); *pb = b; }}
static voidcompile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb){ int i; int a, b;
REQ(n, ITEM); i = n->n_nchildren; REQN(i, 1); n = n->n_child; if (n->n_type == LSQB) { REQN(i, 3); n++; REQ(n, RHS); *pa = addnfastate(nf); *pb = addnfastate(nf); addnfaarc(nf, *pa, *pb, EMPTY); compile_rhs(ll, nf, n, &a, &b); addnfaarc(nf, *pa, a, EMPTY); addnfaarc(nf, b, *pb, EMPTY); REQN(i, 1); n++; REQ(n, RSQB); } else { compile_atom(ll, nf, n, pa, pb); if (--i <= 0) return; n++; addnfaarc(nf, *pb, *pa, EMPTY); if (n->n_type == STAR) *pb = *pa; else REQ(n, PLUS); }}
static voidcompile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb){ int i;
REQ(n, ATOM); i = n->n_nchildren; REQN(i, 1); n = n->n_child; if (n->n_type == LPAR) { REQN(i, 3); n++; REQ(n, RHS); compile_rhs(ll, nf, n, pa, pb); n++; REQ(n, RPAR); } else if (n->n_type == NAME || n->n_type == STRING) { *pa = addnfastate(nf); *pb = addnfastate(nf); addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str)); } else REQ(n, NAME);}
static voiddumpstate(labellist *ll, nfa *nf, int istate){ nfastate *st; int i; nfaarc *ar;
printf("%c%2d%c", istate == nf->nf_start ? '*' : ' ', istate, istate == nf->nf_finish ? '.' : ' '); st = &nf->nf_state[istate]; ar = st->st_arc; for (i = 0; i < st->st_narcs; i++) { if (i > 0) printf("\n "); printf("-> %2d %s", ar->ar_arrow, PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label])); ar++; } printf("\n");}
static voiddumpnfa(labellist *ll, nfa *nf){ int i;
printf("NFA '%s' has %d states; start %d, finish %d\n", nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish); for (i = 0; i < nf->nf_nstates; i++) dumpstate(ll, nf, i);}
/* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */
static voidaddclosure(bitset ss, nfa *nf, int istate){ if (addbit(ss, istate)) { nfastate *st = &nf->nf_state[istate]; nfaarc *ar = st->st_arc; int i;
for (i = st->st_narcs; --i >= 0; ) { if (ar->ar_label == EMPTY) addclosure(ss, nf, ar->ar_arrow); ar++; } }}
typedef struct _ss_arc { bitset sa_bitset; int sa_arrow; int sa_label;} ss_arc;
typedef struct _ss_state { bitset ss_ss; int ss_narcs; struct _ss_arc *ss_arc; int ss_deleted; int ss_finish; int ss_rename;} ss_state;
typedef struct _ss_dfa { int sd_nstates; ss_state *sd_state;} ss_dfa;
/* Forward */static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits, labellist *ll, char *msg);static void simplify(int xx_nstates, ss_state *xx_state);static void convert(dfa *d, int xx_nstates, ss_state *xx_state);
static voidmakedfa(nfagrammar *gr, nfa *nf, dfa *d){ int nbits = nf->nf_nstates; bitset ss; int xx_nstates; ss_state *xx_state, *yy; ss_arc *zz; int istate, jstate, iarc, jarc, ibit; nfastate *st; nfaarc *ar;
ss = newbitset(nbits); addclosure(ss, nf, nf->nf_start); xx_state = (ss_state *)PyObject_MALLOC(sizeof(ss_state)); if (xx_state == NULL) Py_FatalError("no mem for xx_state in makedfa"); xx_nstates = 1; yy = &xx_state[0]; yy->ss_ss = ss; yy->ss_narcs = 0; yy->ss_arc = NULL; yy->ss_deleted = 0; yy->ss_finish = testbit(ss, nf->nf_finish); if (yy->ss_finish) printf("Error: nonterminal '%s' may produce empty.\n", nf->nf_name);
/* This algorithm is from a book written before
the invention of structured programming... */
/* For each unmarked state... */ for (istate = 0; istate < xx_nstates; ++istate) { size_t size; yy = &xx_state[istate]; ss = yy->ss_ss; /* For all its states... */ for (ibit = 0; ibit < nf->nf_nstates; ++ibit) { if (!testbit(ss, ibit)) continue; st = &nf->nf_state[ibit]; /* For all non-empty arcs from this state... */ for (iarc = 0; iarc < st->st_narcs; iarc++) { ar = &st->st_arc[iarc]; if (ar->ar_label == EMPTY) continue; /* Look up in list of arcs from this state */ for (jarc = 0; jarc < yy->ss_narcs; ++jarc) { zz = &yy->ss_arc[jarc]; if (ar->ar_label == zz->sa_label) goto found; } /* Add new arc for this state */ size = sizeof(ss_arc) * (yy->ss_narcs + 1); yy->ss_arc = (ss_arc *)PyObject_REALLOC( yy->ss_arc, size); if (yy->ss_arc == NULL) Py_FatalError("out of mem"); zz = &yy->ss_arc[yy->ss_narcs++]; zz->sa_label = ar->ar_label; zz->sa_bitset = newbitset(nbits); zz->sa_arrow = -1; found: ; /* Add destination */ addclosure(zz->sa_bitset, nf, ar->ar_arrow); } } /* Now look up all the arrow states */ for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) { zz = &xx_state[istate].ss_arc[jarc]; for (jstate = 0; jstate < xx_nstates; jstate++) { if (samebitset(zz->sa_bitset, xx_state[jstate].ss_ss, nbits)) { zz->sa_arrow = jstate; goto done; } } size = sizeof(ss_state) * (xx_nstates + 1); xx_state = (ss_state *)PyObject_REALLOC(xx_state, size); if (xx_state == NULL) Py_FatalError("out of mem"); zz->sa_arrow = xx_nstates; yy = &xx_state[xx_nstates++]; yy->ss_ss = zz->sa_bitset; yy->ss_narcs = 0; yy->ss_arc = NULL; yy->ss_deleted = 0; yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish); done: ; } }
if (Py_DebugFlag) printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll, "before minimizing");
simplify(xx_nstates, xx_state);
if (Py_DebugFlag) printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll, "after minimizing");
convert(d, xx_nstates, xx_state);
/* XXX cleanup */ PyObject_FREE(xx_state);}
static voidprintssdfa(int xx_nstates, ss_state *xx_state, int nbits, labellist *ll, char *msg){ int i, ibit, iarc; ss_state *yy; ss_arc *zz;
printf("Subset DFA %s\n", msg); for (i = 0; i < xx_nstates; i++) { yy = &xx_state[i]; if (yy->ss_deleted) continue; printf(" Subset %d", i); if (yy->ss_finish) printf(" (finish)"); printf(" { "); for (ibit = 0; ibit < nbits; ibit++) { if (testbit(yy->ss_ss, ibit)) printf("%d ", ibit); } printf("}\n"); for (iarc = 0; iarc < yy->ss_narcs; iarc++) { zz = &yy->ss_arc[iarc]; printf(" Arc to state %d, label %s\n", zz->sa_arrow, PyGrammar_LabelRepr( &ll->ll_label[zz->sa_label])); } }}
/* PART THREE -- SIMPLIFY DFA */
/* Simplify the DFA by repeatedly eliminating states that are
equivalent to another oner. This is NOT Algorithm 3.3 from [Aho&Ullman 77]. It does not always finds the minimal DFA, but it does usually make a much smaller one... (For an example of sub-optimal behavior, try S: x a b+ | y a b+.)*/
static intsamestate(ss_state *s1, ss_state *s2){ int i;
if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish) return 0; for (i = 0; i < s1->ss_narcs; i++) { if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow || s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label) return 0; } return 1;}
static voidrenamestates(int xx_nstates, ss_state *xx_state, int from, int to){ int i, j;
if (Py_DebugFlag) printf("Rename state %d to %d.\n", from, to); for (i = 0; i < xx_nstates; i++) { if (xx_state[i].ss_deleted) continue; for (j = 0; j < xx_state[i].ss_narcs; j++) { if (xx_state[i].ss_arc[j].sa_arrow == from) xx_state[i].ss_arc[j].sa_arrow = to; } }}
static voidsimplify(int xx_nstates, ss_state *xx_state){ int changes; int i, j;
do { changes = 0; for (i = 1; i < xx_nstates; i++) { if (xx_state[i].ss_deleted) continue; for (j = 0; j < i; j++) { if (xx_state[j].ss_deleted) continue; if (samestate(&xx_state[i], &xx_state[j])) { xx_state[i].ss_deleted++; renamestates(xx_nstates, xx_state, i, j); changes++; break; } } } } while (changes);}
/* PART FOUR -- GENERATE PARSING TABLES */
/* Convert the DFA into a grammar that can be used by our parser */
static voidconvert(dfa *d, int xx_nstates, ss_state *xx_state){ int i, j; ss_state *yy; ss_arc *zz;
for (i = 0; i < xx_nstates; i++) { yy = &xx_state[i]; if (yy->ss_deleted) continue; yy->ss_rename = addstate(d); }
for (i = 0; i < xx_nstates; i++) { yy = &xx_state[i]; if (yy->ss_deleted) continue; for (j = 0; j < yy->ss_narcs; j++) { zz = &yy->ss_arc[j]; addarc(d, yy->ss_rename, xx_state[zz->sa_arrow].ss_rename, zz->sa_label); } if (yy->ss_finish) addarc(d, yy->ss_rename, yy->ss_rename, 0); }
d->d_initial = 0;}
/* PART FIVE -- GLUE IT ALL TOGETHER */
static grammar *maketables(nfagrammar *gr){ int i; nfa *nf; dfa *d; grammar *g;
if (gr->gr_nnfas == 0) return NULL; g = newgrammar(gr->gr_nfa[0]->nf_type); /* XXX first rule must be start rule */ g->g_ll = gr->gr_ll;
for (i = 0; i < gr->gr_nnfas; i++) { nf = gr->gr_nfa[i]; if (Py_DebugFlag) { printf("Dump of NFA for '%s' ...\n", nf->nf_name); dumpnfa(&gr->gr_ll, nf); printf("Making DFA for '%s' ...\n", nf->nf_name); } d = adddfa(g, nf->nf_type, nf->nf_name); makedfa(gr, gr->gr_nfa[i], d); }
return g;}
grammar *pgen(node *n){ nfagrammar *gr; grammar *g;
gr = metacompile(n); g = maketables(gr); translatelabels(g); addfirstsets(g); PyObject_FREE(gr); return g;}
grammar *Py_pgen(node *n){ return pgen(n);}
/*
Description-----------
Input is a grammar in extended BNF (using * for repetition, + forat-least-once repetition, [] for optional parts, | for alternatives and() for grouping). This has already been parsed and turned into a parsetree.
Each rule is considered as a regular expression in its own right.It is turned into a Non-deterministic Finite Automaton (NFA), whichis then turned into a Deterministic Finite Automaton (DFA), which is thenoptimized to reduce the number of states. See [Aho&Ullman 77] chapter 3,or similar compiler books (this technique is more often used for lexicalanalyzers).
The DFA's are used by the parser as parsing tables in a special waythat's probably unique. Before they are usable, the FIRST sets of allnon-terminals are computed.
Reference---------
[Aho&Ullman 77] Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977 (first edition)
*/
|